325 research outputs found

    In situ apparatus for the study of clathrate hydrates relevant to solar system bodies using synchrotron X-ray diffraction and Raman spectroscopy

    Full text link
    Clathrate hydrates are believed to play a significant role in various solar system environments, e.g. comets, and the surfaces and interiors of icy satellites, however the structural factors governing their formation and dissociation are poorly understood. We demonstrate the use of a high pressure gas cell, combined with variable temperature cooling and time-resolved data collection, to the in situ study of clathrate hydrates under conditions relevant to solar system environments. Clathrates formed and processed within the cell are monitored in situ using synchrotron X-ray powder diffraction and Raman spectroscopy. X-ray diffraction allows the formation of clathrate hydrates to be observed as CO2 gas is applied to ice formed within the cell. Complete conversion is obtained by annealing at temperatures just below the ice melting point. A subsequent rise in the quantity of clathrate is observed as the cell is thermally cycled. Four regions between 100-5000cm-1 are present in the Raman spectra that carry features characteristic of both ice and clathrate formation. This novel experimental arrangement is well suited to studying clathrate hydrates over a range of temperature (80-500K) and pressure (1-100bar) conditions and can be used with a variety of different gases and starting aqueous compositions. We propose the increase in clathrate formation observed during thermal cycling may be due to the formation of a quasi liquid-like phase that forms at temperatures below the ice melting point, but which allows easier formation of new clathrate cages, or the retention and delocalisation of previously formed clathrate structures, possibly as amorphous clathrate. The structural similarities between hexagonal ice, the quasi liquid-like phase, and crystalline CO2 hydrate mean that differences in the Raman spectrum are subtle; however, all features out to 5000cm-1 are diagnostic of clathrate structure.Comment: Astronomy & Astrophysics, in press. 6 page

    Mastacembelid eels support Lake Tanganyika as an evolutionary hotspot of diversification

    Get PDF
    Background. Lake Tanganyika (LT) is the oldest of the African Rift Lakes and is one of the richest freshwater ecosystems on Earth, with high levels of faunal diversity and endemism. The endemic species flocks that occur in this lake, such as cichlid fishes, gastropods, catfish and crabs, provide unique comparative systems for the study of patterns and processes of speciation. Mastacembelid eels (Teleostei: Mastacembelidae) are a predominately riverine family of freshwater fish, occurring across Africa and Asia, but which also form a small species flock in LT. Methods. Including 25 species across Africa, plus Asian representatives as outgroups, we present the first molecular phylogenetic analysis for the group, focusing particularly on the evolutionary history and biodiversity of LT mastacembelid eels. A combined matrix of nuclear and mitochondrial genes based on 3118 bp are analysed implementing different phylogenetic methods, including Bayesian inference and maximum likelihood. Results. LT Mastacembelus are recovered as monophyletic, and analyses reveal the rapid diversification of five main LT lineages. Relaxed molecular clock dates provide age estimates for the LT flock at ∼7-8 Myr, indicating intralacustrine diversification, with further speciation events coinciding with periods of lower lake level. Our analyses also reveal as yet undescribed diversity of lacustrine and riverine species. A Southern-Eastern African clade, that is younger than the LT flock, is also recovered, while West African taxa are basal members of the African mastacembelid clade. Conclusions. That the LT species flock of mastacembelid eels appears to have colonised and immediately diversified soon after the formation of the lake, supports the view of LT as an evolutionary hotspot of diversification. We find evidence for biogeographic clades mirroring a similar pattern to other ichthyological faunas. In addition, our analyses also highlight a split of African and Asian mastacembelid eels at ∼19 Myr that is considerably younger than the split between their associated continents, suggesting a dispersal scenario for their current distribution. © 2010 Brown et al; licensee BioMed Central Ltd

    Non-aqueous formation of the calcium carbonate polymorph vaterite: astrophysical implications

    Full text link
    We study the formation of calcium carbonate, through the solid-gas interaction of amorphous Ca-silicate with gaseous CO2, at elevated pressures, and link this to the possible presence of calcium carbonate in a number of circumstellar and planetary environments. We use in-situ synchrotron X-Ray powder diffraction to obtain detailed structural data pertaining to the formation of the crystalline calcium carbonate phase vaterite and its evolution with temperature. We found that the metastable calcium carbonate phase vaterite was formed alongside calcite, at elevated CO2 pressure, at room temperature and subsequently remained stable over a large range of temperature and pressure. We report the formation of the calcium carbonate mineral vaterite whilst attempting to simulate carbonate dust grain formation in astrophysical environments. This suggests that vaterite could be a mineral component of carbonate dust and also presents a possible method of formation for vaterite and its polymorphs on planetary surfaces.Comment: Astronomy and Astrophysics, in pres

    High frequency environmental DNA metabarcoding provides rapid and effective monitoring of fish community dynamics

    Get PDF
    Long‐term monitoring is critical to measure the response of biodiversity patterns and processes to human‐mediated environmental pressures. This is particularly pertinent in freshwaters, where recent estimates indicated a third of all fish species are threatened with extinction, making ongoing biomonitoring essential for conservation management. High frequency annual monitoring is critical for identifying temporal changes in fish community composition; however, traditional survey methods are typically less practical over such timeframes. While environmental (e)DNA measurement represents a potentially powerful tool for monitoring temporal community dynamics, studies are lacking. To address this deficit, we generated a high frequency time‐series dataset of entire fish communities using eDNA metabarcoding, to directly assess the repeatability and sensitivity of this method for detecting annual population trends. We targeted two differing environments (freshwater vs. intertidal) within the Thames catchment, UK, where detailed historical records from traditional monitoring were available for comparison. To test how robust eDNA data is for inferring the known community, we applied a hierarchical, nested design encompassing short and longer‐term variation in eDNA data. Our analyses showed that irrespective of environment, eDNA metabarcoding represented known seasonal shifts in fish communities, where increased relative read abundance of eDNA coincided with known migratory and spawning events, including those of the critically endangered native species Anguilla anguilla (European eel). eDNA species detections across a single year included over 75% of species recorded in a ca. 30‐year historical dataset, highlighting the power of eDNA for species detection. Our findings provide greater insight into the utility of eDNA metabarcoding for recovering temporal trends in fish communities from dynamic freshwater systems and insight into the potential best sampling strategy for future eDNA surveys

    The biogeographic history of neosuchian crocodiles and the impact of saltwater tolerance variability

    Get PDF
    Extant neosuchian crocodiles are represented by only 24 taxa that are confined to the tropics and subtropics. However, at other intervals during their 200 Myr evolutionary history the clade reached considerably higher levels of species-richness, matched by more widespread distributions. Neosuchians have occupied numerous habitats and niches, ranging from dwarf riverine forms to large marine predators. Despite numerous previous studies, several unsolved questions remain with respect to their biogeographic history, including the geographical origins of major groups, e.g. Eusuchia and Neosuchia itself. We carried out the most comprehensive biogeographic analysis of Neosuchia to date, based on a multivariate K-means clustering approach followed by the application of two ancestral area estimation methods (BioGeoBEARS and Bayesian ancestral location estimation) applied to two recently published phylogenies. Our results place the origin of Neosuchia in northwestern Pangaea, with subsequent radiations into Gondwana. Eusuchia probably emerged in the European archipelago during the Late Jurassic/Early Cretaceous, followed by dispersals to the North American and Asian landmasses. We show that putative transoceanic dispersal events are statistically significantly less likely to happen in alligatoroids. This finding is consistent with the saltwater intolerant physiology of extant alligatoroids, bolstering inferences of such intolerance in their ancestral lineages

    Methods to Obtain the Occupant Perspective

    Get PDF
    This chapter summarizes the most important methods for actively engaging occupants in the processes of designing buildings. Each stage in the building life cycle places different demands on the professional-to-occupant relationship. Both objective and subjective data are important in this relationship and raises key epistemological questions about factors that cannot be directly observed—e.g., how do we know what we know about occupant behavior? The chapter guides the reader through this intellectually dangerous terrain by suggesting that the best way to find out what people think is to ask them. Some methods discussed here are familiar to practitioners, including interviews, surveys, focus groups, and direct observation. Others are just entering widespread practice, including virtual reality simulations, ubiquitous sensors and monitoring systems, and momentary ecological assessments. Each method has strengths, weaknesses, and appropriateness for use during certain stages of the building life cycle. The key takeaways from this chapter are that (1) building designers and operators can learn much value from occupants and (2) the new skills needed to engage successfully can be quickly learned. Occupant-centric design approaches that employ these methods improve the likelihood of successful building, interface design, and occupant outcomes

    The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika

    Get PDF
    1. Impacts of anthropogenic disturbance are especially severe in freshwater ecosystems. In particular, land use disturbance can lead to increased levels of pollution, including elevated nutrient and sediment loads whose negative impacts range from the community to the individual level. However, few studies have investigated if these impacts are uniform across species represented by multiple trophic levels. To address this knowledge gap, we focused on Lake Tanganyika cichlid fishes, which comprise hundreds of species representing a wide range of feeding strategies. Cichlids are at their most diverse within the near‐shore environment; however, land use disturbance of this environment has led to decreasing diversity, particularly in herbivores. We therefore tested if there is a uniform effect of pollution across species and trophic groups within the hyper‐diverse rocky shore cichlid fish community. 2. We selected three sites with differing levels of human impact along the Tanzanian coastline and 10 cichlid species, comprising varying taxonomic and trophic groups, common to these sites. Nitrogen and carbon stable isotope values for 528 samples were generated and analysed using generalised linear mixed models. We also estimated stomach contents including sediment proportions. 3. Our study highlights that multiple sources of pollution are having differing effects across species within a diverse fish community. We found that nitrogen stable isotope values were significantly higher at the most disturbed (urbanised) site for benthic feeding species, whereas there was no difference in these isotopes between sites for the water column feeding trophic group. Stomach contents revealed that the elevated δ15N values were unlikely to have been caused by differences in diet between sites. However, at the most disturbed site, higher proportions of sediment were present in most herbivores, irrespective of foraging behaviour. 4. It is likely that anthropogenic nitrogen loading is the cause of higher nitrogen stable isotope values since there was no evidence of species shifting trophic levels between sites. Results support our previous study showing herbivore species to be most affected by human disturbance and make the link to pollution much more explicit. As lower diversity of consumers can negatively affect ecosystem processes such as stability, alleviating environmental impact through sewage treatment and afforestation programmes should continue to be a global priority for the conservation of aquatic ecosystems, as well as human health

    Contrasting geographic structure in evolutionarily divergent Lake Tanganyika catfishes

    Get PDF
    Geographic isolation is suggested to be among the most important processes in the generation of cichlid fish diversity in East Africa’s Great Lakes, both through isolation by distance and fluctuating connectivity caused by changing lake levels. However, even broad scale phylogeographic patterns are currently unknown in many non-cichlid littoral taxa from these systems. To begin to address this, we generated restriction- site-associated DNA sequence (RADseq) data to investigate phylogeographic structure throughout Lake Tanganyika (LT) in two broadly sympatric rocky shore catfish species from independent evolutionary radiations with differing behaviors: the mouthbrooding claroteine, Lophiobagrus cyclurus, and the brood-parasite mochokid, Synodontis multi- punctatus. Our results indicated contrasting patterns between these species, with strong lake-wide phylogeographic signal in L. cyclurus including a deep divergence be- tween the northern and southern lake basins. Further structuring of these populations was observed across a heterogeneous habitat over much smaller distances. Strong population growth was observed in L. cyclurus sampled from shallow shorelines, sug- gesting population growth associated with the colonization of new habitats following lake-level rises. Conversely, S. multipunctatus, which occupies a broader depth range, showed little phylogeographic structure and lower rates of population growth. Our findings suggest that isolation by distance and/or habitat barriers may play a role in the divergence of non-cichlid fishes in LT, but this effect varies by species

    Evolution along the Great Rift Valley: phenotypic and genetic differentiation of East African white-eyes (Aves, Zosteropidae)

    Get PDF
    The moist and cool cloud forests of East Africa represent a network of isolated habitats that are separated by dry and warm lowland savannah, offering an opportunity to investigate how strikingly different selective regimes affect species diversification. Here, we used the passerine genus Zosterops (white-eyes) from this region as our model system. Species of the genus occur in contrasting distribution settings, with geographical mountain isolation driving diversification, and savannah interconnectivity preventing differentiation. We analyze (1) patterns of phenotypic and genetic differentiation in high- and lowland species (different distribution settings), (2) investigate the potential effects of natural selection and temporal and spatial isolation (evolutionary drivers), and (3) critically review the taxonomy of this species complex. We found strong phenotypic and genetic differentiation among and within the three focal species, both in the highland species complex and in the lowland taxa. Altitude was a stronger predictor of phenotypic patterns than the current taxonomic classification. We found longitudinal and latitudinal phenotypic gradients for all three species. Furthermore, wing length and body weight were significantly correlated with altitude and habitat type in the highland species Z.poliogaster. Genetic and phenotypic divergence showed contrasting inter- and intraspecific structures. We suggest that the evolution of phenotypic characters is mainly driven by natural selection due to differences in the two macro-habitats, cloud forest and savannah. In contrast, patterns of neutral genetic variation appear to be rather driven by geographical isolation of the respective mountain massifs. Populations of the Z.poliogaster complex, as well as Z.senegalensis and Z.abyssinicus, are not monophyletic based on microsatellite data and have higher levels of intraspecific differentiation compared to the currently accepted species
    corecore